How do you evaluate the integral #int arc cscx#?

1 Answer
Jun 21, 2018

#intarc cscx dx=x*arc cscx+ln|x+sqrt(x^2-1)|+c#

Explanation:

Here,

#I=intarc cscxdx=intarc csc x*1dx #

Using Integration by parts:

#color(blue)(int(u*v)dx=uintvdx-int(u'intvdx)dx#

Let,

#u=arc cscx and v=1to# {Let #color(red)( x > 0=>|x|=x#}

#=>u'=-1/(|x|sqrt(x^2-1))=-1/(xsqrt(x^2-1)) and intvdx#=#x#

So,

#I=arc cscx*(x)-int[(-1)/(xsqrt(x^2-1))*x]dx#

#=x*arc cscx+int1/sqrt(x^2-1)dx#

#=x*arc cscx+ln|x+sqrt(x^2-1)|+c#

Note :

If #color(red)( x < 0 ,then ,|x|=-x#

So,

#I=x*arc cscx-ln|x+sqrt(x^2-1)|+c#