How do you evaluate the integral #int csctheta#?

1 Answer
Mar 15, 2017

#intcsc(theta)d theta=-lnabs(csc(theta)+cot(theta))+C#

Explanation:

If you know the process of finding #intsec(theta)d theta#, this will be very similar.

Very unintuitively, make the modification:

#intcsc(theta)d theta=intcsc(theta)((csc(theta)+cot(theta))/(csc(theta)+cot(theta)))d theta=int(csc^2(theta)+csc(theta)cot(theta))/(csc(theta)+cot(theta))d theta#

Now let #u=csc(theta)+cot(theta)#. Knowing their derivatives, we can say that #du=(-csc(theta)cot(theta)-csc^2(theta))d theta#.

Note that the numerator of the integral is just the derivative of its denominator times #-1#.

#=-int(-csc(theta)cot(theta)-csc^2(theta))/(csc(theta)+cot(theta))d theta=-int(du)/u=-lnabsu#

Reversing the substitution:

#intcsc(theta)d theta=-lnabs(csc(theta)+cot(theta))+C#