How do you evaluate the integral #int dx/sqrt(a^2+x^2)#? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Eddie Feb 24, 2017 #= sinh^(-1) (x/a) + C# Explanation: Because #cosh^2 z - sinh^2 z = 1#, I would go with the hyperbolic sub #x = a sinh y, dx = a cosh y \ dy# The integral becomes: #int 1/sqrt(a^2+a^2 sinh^2 y)a cosh y \ dy# #= int 1/(a cosh y)*a cosh y \ dy# #= y + C# #= sinh^(-1) (x/a) + C# And because #sinh^(-1) z = ln ( z + sqrt(z^2 + 1))# #= ln ( x/a + sqrt((x/a)^2 + 1)) + C# Answer link Related questions How do I evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ? How do I evaluate the indefinite integral #intsin^6(x)*cos^3(x)dx# ? How do I evaluate the indefinite integral #intcos^5(x)dx# ? How do I evaluate the indefinite integral #intsin^2(2t)dt# ? How do I evaluate the indefinite integral #int(1+cos(x))^2dx# ? How do I evaluate the indefinite integral #intsec^2(x)*tan(x)dx# ? How do I evaluate the indefinite integral #intcot^5(x)*sin^4(x)dx# ? How do I evaluate the indefinite integral #inttan^2(x)dx# ? How do I evaluate the indefinite integral #int(tan^2(x)+tan^4(x))^2dx# ? How do I evaluate the indefinite integral #intx*sin(x)*tan(x)dx# ? See all questions in Integrals of Trigonometric Functions Impact of this question 26512 views around the world You can reuse this answer Creative Commons License