How do you evaluate the integral #int ln(3x+4)#?

2 Answers
Apr 15, 2018

#(3x+4)/3(ln(3x+4)-1)+C#

Explanation:

Let #I= int ln(3x+4) dx#

N.B. Since #I# is an indefinite integral it cannot be "evaluated". Rather it can be expressed as a function of #x# plus an arbitrary constant.

Let #u=(3x+4) -> dx = (du)/3#

#:. I= int (ln u)/3 du = 1/3 int lnu du#

Integration by Parts states: #int f(x)g'(x) dx= f(x)g(x) - int f'(x)g(x) dx#

Considering #3I = int lnu * 1 du#

#f(x) = lnu , g'(x) = 1#

Thus, #f'(x) = 1/u, g(x) =u#

#:. 3I = lnu*u - int (1/u *u)du#

#= u lnu - int 1 du#

#= u lnu -u #

#:. I = u/3( lnu -1) +C#

Undo substitution.

#I = (3x+4)/3(ln(3x+4)-1)+C#

Apr 15, 2018

#1/3(3x+4)(ln(3x+4)-1)+C#

Explanation:

We got: #intln(3x+4) \ dx#

Let's use u-substitution. Let #u=3x+4,:.du=3 \ dx,dx=(du)/3#

And so,

#=intlnu \ (du)/3#

Taking out the constant, the problem becomes,

#=1/3intlnu \ du#

Let's find #intlnu \ du#. We got:

#intlnu \ du#

#=intlnu*1 \ du#

Now, we use integration by parts, which is:

#intu \ dv=uv-intv \ du#

Let #u=lnu,dv=1#.

#:.v=u,du=1/u#

And so,

#intlnu*1 \ du=u\lnu-intu*1/u \ du#

#=u\lnu-int1 \ du#

#=u\lnu-u+C#

Now, we plug that back into the original integral.

We get:

#=1/3(u\lnu-u)#

Notice how I don't put in the constant yet, as we always put the constant after the final calculation, and not during the calculation, as #1/3C# would be incorrect.

#=1/3u\lnu-1/3u#

Substitute back #u=3x+4#, we get:

#=1/3(3x+4)ln(3x+4)-1/3(3x+4)#

#=1/3(3x+4)(ln(3x+4)-1)#

Now, we can add the constant.

#=1/3(3x+4)(ln(3x+4)-1)+C#