How do you evaluate the integral #int sec^2x/(sqrt(1-tanx))dx# from 0 to #pi/4#?

1 Answer
Aug 1, 2016

#int_0^(pi//4)sec^2x/sqrt(1-tanx)dx=2#

Explanation:

We have:

#int_0^(pi//4)sec^2x/sqrt(1-tanx)dx#

This is ripe for substitution. If we let #u=1-tanx# then #du=-sec^2xdx#. Before making these substitutions, note that the integral's bounds will change as well.

The bound of #0# becomes #1-tan(0)=1#. The bound of #pi/4# becomes #1-tan(pi/4)=0#.

Thus we see:

#int_0^(pi//4)sec^2x/sqrt(1-tanx)dx=-int_0^(pi//4)(-sec^2x)/sqrt(1-tanx)dx=-int_1^0 1/sqrtudu#

Notice that we can take the negative sign to flip the order of the bounds, just to make things look nicer. Write the square root using fractional and negative exponents.

#-int_1^0 1/sqrtudu=int_0^1u^(-1/2)du=[u^(1/2)/(1/2)]_0^1=[2sqrtu]_0^1=2sqrt1-2sqrt0#

#=2#