How do you evaluate the integral #int xsec^2x#?
1 Answer
Explanation:
This is a prime candidate for integration by parts, which takes the form
For the given integral
So, let:
#{(u=x" "=>" "du=dx),(dv=sec^2(x)dx" "=>" "v=tan(x)):}#
We then have:
#intxsec^2(x)dx=uv-intvdu#
#color(white)(intxsec^2(x)dx)=xtan(x)-inttan(x)dx#
You may have the integral of
#color(white)(intxsec^2(x)dx)=xtan(x)-intsin(x)/cos(x)dx#
Let
#color(white)(intxsec^2(x)dx)=xtan(x)+int(-sin(x))/cos(x)dx#
#color(white)(intxsec^2(x)dx)=xtan(x)+int1/tdt#
This is a common integral:
#color(white)(intxsec^2(x)dx)=xtan(x)+ln(abst)+C#
Working back from
#color(white)(intxsec^2(x)dx)=xtan(x)+ln(abscos(x))+C#