How do you evaluate the integral of #int (2^tanθ)sec^2(θ) dθ#?

1 Answer
Feb 21, 2016

#int 2^{tan theta} * sec^2 theta "d"theta = 2^{tan theta}/ln2 + "Integration Constant"#

Explanation:

Note that the

#frac{"d"}{"d"theta}(tan theta) = sec^2 theta#

The integrand looks to be a result of the chain rule so let's work backwards.

The derivative of an exponential function is retains the exponential. So we begin by finding the derivative of #2^{tan theta}#.

#frac{"d"}{"d"theta}(2^{tan theta}) = frac{"d"}{"d"theta}(e^{ln2 * tan theta})#

#= e^(ln2 * tan theta) * "d"/("d"theta)(ln2 * tan theta)#

#= e^(ln2 * tan theta) * ln2 * sec^2 theta#

#= 2^{tan theta} * ln2 * sec^2 theta#

Therefore,

#int 2^{tan theta} * ln2 * sec^2 theta "d"theta = 2^{tan theta} + "Constant"#

Divide both sides by #ln2# to get our final answer.

#int 2^{tan theta} * sec^2 theta "d"theta = 2^{tan theta}/ln2 + "Another Constant"#