How do you evaluate this #cos((2pi)/7)*cos((3pi)/7)*cos((6pi)/7)# ?

Please, explain me EVERYTHING, I am pretty awful at trigonometry

1 Answer
Mar 22, 2017

#cos((2pi)/7)*cos((3pi)/7)*cos((6pi)/7)#

#=1/(8sin((2pi)/7))*4*2sin((2pi)/7)cos((2pi)/7)*cos((3pi)/7)*cos((6pi)/7)#

#=1/(8sin((2pi)/7))*2*2sin((4pi)/7)*cos((3pi)/7)*cos((6pi)/7)#

#=1/(8sin((2pi)/7))*2*2sin(pi-(3pi)/7)*cos((3pi)/7)*cos((6pi)/7)#

#=1/(8sin((2pi)/7))*2*2sin((3pi)/7)*cos((3pi)/7)*cos((6pi)/7)#

#=1/(8sin((2pi)/7))*2sin((6pi)/7)*cos((6pi)/7)#

#=1/(8sin((2pi)/7))sin((12pi)/7)#

#=1/(8sin((2pi)/7))sin(2pi-(2pi)/7)#

#=1/(8sin((2pi)/7))(-sin((2pi)/7))#

#=-1/8#