We know that,
#color(red)((1)cos^2theta=(1+cos2theta)/2#
#color(blue)((2)intcosAxdx=1/AsinAx+c#
Here,
#I=int340cos^4(20x)dx#
Subst. , #20x=u=>x=u/20=>dx=1/20du#
So,
#I=int340cos^4uxx1/20du#
#=17int (cos^2u)^2du...toApply(1)#
#=17int((1+cos2u)/2)^2#
#=17/4int(1+2cos2u+cos^2 2u)du#
#=17/4int[1+2cos2u+(1+cos4u)/2]#
#=17/8int[2+4cos2u+1+cos4u]du#
#=17/8int[3+4cos2u+cos4u]du...toApply(2)#
#=17/8[3u+(4sin2u)/2+(sin4u)/4]+c#
#=17/32[12u+8sin2u+sin4u]+c#
Subst. back , #u=20x#
#I=17/32[12(20x)+8sin2(20x)+4sin4(20x)]+c#
#I=17/32[240x+8sin(40x)+4sin(80x)]+c#