# How do you evaluate z(x+1) if w=6, x=0.4, y=1/2, z=-3?

##### 2 Answers
May 2, 2017

See the solution process below:

#### Explanation:

To evaluate this expression substitute $\textcolor{red}{- 3}$ for $\textcolor{red}{z}$ and $\textcolor{b l u e}{0.4}$ for $\textcolor{b l u e}{x}$. The values for $w$ and $y$ are not used in the expression and are extraneous or not needed or necessary:

$\textcolor{red}{z} \left(\textcolor{b l u e}{x} + 1\right)$ becomes:

$\textcolor{red}{- 3} \left(\textcolor{b l u e}{0.4} + 1\right) \implies \textcolor{red}{- 3} \cdot 1.4 \implies - 4.2$

May 2, 2017

$z \left(x + 1\right) = \textcolor{g r e e n}{- 4.2}$

#### Explanation:

Given
$\textcolor{w h i t e}{\text{XXX}} \textcolor{\mathmr{and} a n \ge}{w} = \textcolor{\mathmr{and} a n \ge}{6}$
$\textcolor{w h i t e}{\text{XXX}} \textcolor{red}{x} = \textcolor{red}{0.4}$
$\textcolor{w h i t e}{\text{XXX}} \textcolor{b r o w n}{y} = \textcolor{b r o w n}{\frac{1}{2}}$
$\textcolor{w h i t e}{\text{XXX}} \textcolor{b l u e}{z} = \textcolor{b l u e}{- 3}$

Then
$\textcolor{w h i t e}{\text{XXX}} \textcolor{b l u e}{z} \left(\textcolor{red}{x} + 1\right)$
$\textcolor{w h i t e}{\text{XXXXXXX}} = \left(\textcolor{b l u e}{- 3}\right) \times \left(\textcolor{red}{0.4} + 1\right)$
$\textcolor{w h i t e}{\text{XXXXXXX}} = \left(\textcolor{b l u e}{- 3}\right) \times 1.4$
$\textcolor{w h i t e}{\text{XXXXXXX}} = - 4.2$