How do you express #1/(x^4 - 16)# in partial fractions?

2 Answers
Jun 16, 2016

Derive a system of linear equations and solve to find:

#1/(x^4-16) = 1/(32(x-2))-1/(32(x+2))-1/(8(x^2+4))#

Explanation:

Assuming that we want partial fractions with Real coefficients, start by finding the Real factors of #x^4-16#.

Use the difference of squares identity, which can be written:

#a^2-b^2=(a-b)(a+b)#

twice, as follows:

#x^4-16 = (x^2)^2-4^2#

#= (x^2-4)(x^2+4)#

#= (x^2-2^2)(x^2+4)#

#= (x-2)(x+2)(x^2+4)#

Since these factors are distinct, we are looking for a partial fraction decomposition of the form:

#1/(x^4-16) = A/(x-2)+B/(x+2)+(Cx+D)/(x^2+4)#

#=(A(x+2)(x^2+4)+B(x-2)(x^2+4)+(Cx+D)(x-2)(x+2))/(x^4-16)#

#=(A(x+2)(x^2+4)+B(x-2)(x^2+4)+(Cx+D)(x^2-4))/(x^4-16)#

#=((A+B+C)x^3+(2A-2B+D)x^2+(4A+4B-4C)x+(8A+8B-4D))/(x^4-16)#

Equating coefficients, we get the following system of linear equations:

#{ (A+B+C=0), (2A-2B+D=0), (4A+4B-4C=0), (8A+8B-4D=1) :}#

We can write this system of equations as an augmented matrix, then solve it by performing a sequence of row operations to make the left hand side into a #4xx4# identity matrix. Then the right hand column will be #((A),(B),(C),(D))#

Apologies for the length, but Gaussian elimination is like that...

#((1, 1, 1, 0, |, 0), (2, -2, 0, 1, |, 0), (4, 4, -4, 0, |, 0), (8, -8, 0, -4, |, 1))#

Subtract #4xx#row 1 from row 3 to get:

#((1, 1, 1, 0, |, 0), (2, -2, 0, 1, |, 0), (0, 0, -8, 0, |, 0), (8, -8, 0, -4, |, 1))#

Divide row 3 by #-8# to get:

#((1, 1, 1, 0, |, 0), (2, -2, 0, 1, |, 0), (0, 0, 1, 0, |, 0), (8, -8, 0, -4, |, 1))#

Subtract row 3 from row 1 to get:

#((1, 1, 0, 0, |, 0), (2, -2, 0, 1, |, 0), (0, 0, 1, 0, |, 0), (8, -8, 0, -4, |, 1))#

Subtract #4xx#row 2 from row 4 to get:

#((1, 1, 0, 0, |, 0), (2, -2, 0, 1, |, 0), (0, 0, 1, 0, |, 0), (0, 0, 0, -8, |, 1))#

Divide row 4 by #-8# to get:

#((1, 1, 0, 0, |, 0), (2, -2, 0, 1, |, 0), (0, 0, 1, 0, |, 0), (0, 0, 0, 1, |, -1/8))#

Subtract #2xx# row 1 from row 2 to get:

#((1, 1, 0, 0, |, 0), (0, -4, 0, 1, |, 0), (0, 0, 1, 0, |, 0), (0, 0, 0, 1, |, -1/8))#

Divide row 2 by #-4# to get:

#((1, 1, 0, 0, |, 0), (0, 1, 0, -1/4, |, 0), (0, 0, 1, 0, |, 0), (0, 0, 0, 1, |, -1/8))#

Add #1/4xx#row 4 to row 2 to get:

#((1, 1, 0, 0, |, 0), (0, 1, 0, 0, |, -1/32), (0, 0, 1, 0, |, 0), (0, 0, 0, 1, |, -1/8))#

Subtract row 2 from row 1 to get:

#((1, 0, 0, 0, |, 1/32), (0, 1, 0, 0, |, -1/32), (0, 0, 1, 0, |, 0), (0, 0, 0, 1, |, -1/8))#

So we find:

#((A),(B),(C),(D)) = ((1/32),(-1/32),(0),(-1/8))#

Hence:

#1/(x^4-16) = 1/(32(x-2))-1/(32(x+2))-1/(8(x^2+4))#

Jun 17, 2016

#1/(x^4-16) = 1/(32(x-2))-1/(32(x+2))-1/(8(x^2+4))#

Explanation:

Use the difference of squares identity:

#a^2-b^2=(a-b)(a+b)#

to factor the denominator.

To make things easier, break down into partial fractions in two stages:

#1/(x^4-16) = 1/((x^2-4)(x^2+4))#

We find:

#1/(x^2-4) - 1/(x^2+4) = ((x^2+4)-(x^2-4))/(x^4-16) = 8/(x^4-16)#

So:

#1/(x^4-16) = 1/(8(x^2-4))-1/(8(x^2+4))#

Then note that:

#1/(x-2)-1/(x+2) = ((x+2)-(x-2))/(x^2-4) = 4/(x^2-4)#

So:

#1/(x^2-4) = 1/(4(x-2))-1/(4(x+2))#

And:

#1/(8(x^2-4)) = 1/(32(x-2))-1/(32(x+2))#

Putting it all together:

#1/(x^4-16) = 1/(32(x-2))-1/(32(x+2))-1/(8(x^2+4))#