How do you express #(2x^5 -x^3 -1) / (x^3 -4x) # in partial fractions?

1 Answer
Feb 15, 2016

Partial fractions are #2x^2+7+1/(4x)-55/(8(x-2))-57/(8(x+2))#

Explanation:

To express #(2x^5−x^3−1)/(x^3−4x)# in partial fraction, first the degree of numerator should be less than that of denominator and then factorize denominator. As

#(2x^5−x^3−1)# = #2x^2(x^3-4x)+7(x^3−4x)+28x-1# and

#x^3-4x=x(x+2)(x-2)#

#(2x^5−x^3−1)/(x^3−4x)# = #2x^2+7+(28x-1)/(x(x-2)(x+2)#.

Partial fractions of #(28x-1)/(x(x-2)(x+2)# are given by

#(28x-1)/(x(x-2)(x+2))=A/x+B/(x-2)+C/(x+2)#

=#[A(x-2)(x+2)+Bx(x+2)+Cx(x-2}}/(x(x-2)(x+2)#

#{A(x-2)(x+2)+Bx(x+2)+Cx(x-2)}/(x(x-2)(x+2#

= #{Ax^2-4A+Bx^2+2Bx+Cx^2-2Cx}/(x(x-2)(x+2#

= #{x^2(A+B+C)+x(2B-2C)-4A}/(x(x-2)(x+2#

Hence #A+B+C=0#, #2B-2C=28# and #4A=1#

This gives #A=1/4#, while #B+C=-1/4# and B-C=14# i.e. #B=55/8# and #C=--57/8#

Hence partial fractions are #2x^2+7+1/(4x)-55/(8(x-2))-57/(8(x+2))#