To express #(2x^5−x^3−1)/(x^3−4x)# in partial fraction, first the degree of numerator should be less than that of denominator and then factorize denominator. As
#(2x^5−x^3−1)# = #2x^2(x^3-4x)+7(x^3−4x)+28x-1# and
#x^3-4x=x(x+2)(x-2)#
#(2x^5−x^3−1)/(x^3−4x)# = #2x^2+7+(28x-1)/(x(x-2)(x+2)#.
Partial fractions of #(28x-1)/(x(x-2)(x+2)# are given by
#(28x-1)/(x(x-2)(x+2))=A/x+B/(x-2)+C/(x+2)#
=#[A(x-2)(x+2)+Bx(x+2)+Cx(x-2}}/(x(x-2)(x+2)#
#{A(x-2)(x+2)+Bx(x+2)+Cx(x-2)}/(x(x-2)(x+2#
= #{Ax^2-4A+Bx^2+2Bx+Cx^2-2Cx}/(x(x-2)(x+2#
= #{x^2(A+B+C)+x(2B-2C)-4A}/(x(x-2)(x+2#
Hence #A+B+C=0#, #2B-2C=28# and #4A=1#
This gives #A=1/4#, while #B+C=-1/4# and B-C=14# i.e. #B=55/8# and #C=--57/8#
Hence partial fractions are #2x^2+7+1/(4x)-55/(8(x-2))-57/(8(x+2))#