How do you express #(4x^3-22x^2+33x-6)/((x-3)^3(x+2))# in partial fractions?

1 Answer

The decomposition is #=(3/5)/(x-3)^3+(42/25)/(x-3)^2+(308/125)/(x-3)+(192/125)/(x+2)#

Explanation:

The decomposition is #(4x^3-22x^2+33x-6)/((x-3)^3(x+2))=A/(x-3)^3+B/(x-3)^2+C/(x-3)+D/(x+2)#
#=A(x+2)+B(x-3)(x+2)+C(x-3)^2(x+2)+D(x-3)^3#

#4x^3-22x^2+33x-6=A(x+2)+B(x-3)(x+2)+C(x-3)^2(x+2)+D(x-3)^3#
let #x=3##=>##5A=3##=>##A=3/5#
let #x=-2##=>##-125D=-192##=>##D=192/125#
coefficients of #x^3##=>##C+D=4##=>##C=4-192/125=308/125#
and putting #x=0#, we get #-6=2A-6B+18C-27D#

or #=>6B=6+6/5+18*308/25-27*192/125#

= #36/5+9(616/125-576/25)#

= #36/5+360/125#

= #180/25+72/25=252/25#

#=>B=42/25#