How do you express #(-7x^2-15x-8)/((x+3)(x^2+4))# in partial fractions?

1 Answer
Oct 7, 2016

#(-7x^2-15x-8)/((x+3)(x^2+4))=(-2)/(x+3) + (-5x)/(x^2+4)#

Explanation:

#1.# First, we factorise the denominator, but since this is done, we skip to the next step: Writing a partial fraction for each factor:

#(-7x^2-15x-8)/((x+3)(x^2+4))=a/(x+3) + (bx+c)/(x^2+4)#

#2.# Multiply out the factors to remove the fractions:

#-7x^2-15x-8=a(x^2+4) + (bx+c)(x+3)#

#3.# Solve the equation for the constants:

#-7x^2-15x-8= (-7x-8)(x+1)#
#(-7x-8)(x+1)= a(x^2+4) + (bx+c)(x+3)#

#"a")# If we set #x=-3#, then we can solve for #a# because #bx+c=0#

#(-7*(-3)-8)(-3+1) = a((-3)^2+4) #

#-26=13a#

#a=-2#

#(-7x-8)(x+1) = -2(x^2+4) + (bx+c)(x+3)#

#"b")# If we set #x=0#, we can solve for #c# because #bx=0#

#(-8)(+1) = -2(+4)+c(3)#

#-8=-8+3c#

#3c=0, c=0#

#(-7x-8)(x+1) = -2(x^2+4) + (bx)(x+3)#

#"c")# If we set #x=1#, we can now solve for #b# relatively simply

#(-7-8)(1+1) = -2(1+4) +b(1+3) #

#-30 = -10 + 4b#

#-20=4b#

#b=-5#

#4.#Now we substitute the values back into the partial fractions:

#(-7x^2-15x-8)/((x+3)(x^2+4))=(-2)/(x+3) + (-5x)/(x^2+4)#