How do you factor #25v ^ { 2} + 29v + 9#?

2 Answers
Dec 28, 2016

#25v^2+29v+9=(5v+29/10+(isqrt59)/10)(5v+29/10-(isqrt59)/10)#

Explanation:

#25v^2+29v+9#

= #(5v)^2+2xx5vxx29/10+(29/10)^2-(29/10)^2+9#

= #(5v+29/10)^2-841/100+9#

= #(5v+29/10)^2+59/100#

= #(5v+29/10)^2-(59/100)xxi^2# - as #i^2=-1#

= #(5v+29/10)^2-((isqrt59)/10)^2#

= #(5v+29/10+(isqrt59)/10)(5v+29/10-(isqrt59)/10)#

Dec 28, 2016

This quadratic cannot be factored using Real coefficients.

If you allow Complex coefficients then you find:

#(25x^2+29v+9) = (5x+29/10-sqrt(59)/10i)(5x+29/10+sqrt(59)/10i)#

Explanation:

#25v^2+29v+9#

is in the form

#av^2+bv+c#

with #a=25#, #b=29# and #c=9#

This has discriminant #Delta# given by the formula:

#Delta = b^2-4ac = 29^2-4(25)(9) = 841-900 = -59#

Since #Delta < 0# this quadratic cannot be factored using Real coefficients.

If you still want to factor it, it can be done using Complex coefficients.

I will complete the square then use the difference of squares identity:

#A^2-B^2 = (A-B)(A+B)#

using #A=(50x+29)# and #B=sqrt(Delta)=sqrt(-59)=sqrt(59)i#

To avoid some arithmetic requiring fractions, multiply the given quadratic by #100 = 2^2*5^2#, then divide by #100# at the end:

#100(25x^2+29v+9) = 2500x^2+2900v+900#

#color(white)(100(25x^2+29v+9)) = (50x)^2+2(50x)(29)+29^2+59#

#color(white)(100(25x^2+29v+9)) = (50x+29)^2-(sqrt(59)i)^2#

#color(white)(100(25x^2+29v+9)) = ((50x+29)-sqrt(59)i)((50x+29)+sqrt(59)i)#

#color(white)(100(25x^2+29v+9)) = (50x+29-sqrt(59)i)(50x+29+sqrt(59)i)#

So:

#25x^2+29v+9 = 1/100(50x+29-sqrt(59)i)(50x+29+sqrt(59)i)#

#color(white)(25x^2+29v+9) = (5x+29/10-sqrt(59)/10i)(5x+29/10+sqrt(59)/10i)#