How do you factor #2p^3+6p^2+3p+9 #?
1 Answer
Oct 29, 2015
Factor by grouping to find:
#2p^3+6p^2+3p+9 = (2p^2+3)(p+3)#
Explanation:
#2p^3+6p^2+3p+9 = (2p^3+6p^2)+(3p+9)#
#=2p^2(p+3)+3(p+3)#
#=(2p^2+3)(p+3)#
If you allow Complex coefficients you can factor it as:
#(2p^2+3) = (sqrt(2)p-sqrt(3)i)(sqrt(2)p+sqrt(3)i)#
Hence:
#2p^3+6p^2+3p+9 = (sqrt(2)p-sqrt(3)i)(sqrt(2)p+sqrt(3)i)(p+3)#