How do you factor #36a^4 + 90a^2b^2 + 99b^4#?
1 Answer
May 12, 2016
#=(6a^2-3(sqrt(4sqrt(11)-10))ab+3sqrt(11)b^2)(6a^2+3(sqrt(4sqrt(11)-10))ab+3sqrt(11)b^2)#
Explanation:
Taking square roots of the first and last term, let us try a factorisation of the form:
#(6a^2-kab+3sqrt(11)b^2)(6a^2+kab+3sqrt(11)b^2)#
#=36a^4+(36sqrt(11)-k^2)a^2b^2+99b^4#
So all we need to do is choose
#90 = 36sqrt(11)-k^2#
Add
#k^2 = 36sqrt(11)-90#
So:
#k = +-sqrt(36sqrt(11)-90) = +-3sqrt(4sqrt(11)-10)#
So:
#36a^4+90a^2b^2+99b^4#
#=(6a^2-3(sqrt(4sqrt(11)-10))ab+3sqrt(11)b^2)(6a^2+3(sqrt(4sqrt(11)-10))ab+3sqrt(11)b^2)#