How do you factor # 3x^2-4x-32#?

1 Answer
Apr 17, 2016

#3x^2-4x-32=(3x+8)(x-4)#

Explanation:

Use an AC method:

Find a pair of factors of #AC = 3*32 = 96# which differ by #B=4#.

The pair #12, 8# works.

Use that pair to split the middle term and factor by grouping:

#3x^2-4x-32#

#=3x^2-12x+8x-32#

#=(3x^2-12x)+(8x-32)#

#=3x(x-4)+8(x-4)#

#=(3x+8)(x-4)#

#color(white)()#
Alternative method

Complete the square, then use the difference of squares identity:

#a^2-b^2=(a-b)(a+b)#

with #a=(3x-2)# and #b=10# as follows:

First multiply by #3# to make the leading term into a perfect square and simplify the arithmetic.

#3(3x^2-4x-32)#

#=9x^2-12x-96#

#=(3x)^2-2(2)(3x)-96#

#=(3x-2)^2-2^2-96#

#=(3x-2)^2-10^2#

#=((3x-2)-10)((3x-2)+10)#

#=(3x-12)(3x+8)#

#=3(x-4)(3x+8)#

Dividing both ends by #3#, we find:

#3x^2-4x-32 = (x-4)(3x+8)#