How do you factor #5a^2-3a+15#?
1 Answer
Explanation:
Given:
#5a^2-3a+15#
This is of the form:
#Aa^2+Ba+C#
with
It has discriminant
#Delta = B^2-4AC = (-3)^2-4(5)(15) = 9-300 = -291#
Since
We can still factor it, but we need complex coefficients.
We can complete the square, then use the difference of squares identity:
#A^2-B^2 = (A-B)(A+B)#
with
#20(5a^2-3a+15) = 100a^2-60a+300#
#color(white)(20(5a^2-3a+15)) = (10a)^2-2(10a)(3)+9+291#
#color(white)(20(5a^2-3a+15)) = (10a-3)^2+(sqrt(291))^2#
#color(white)(20(5a^2-3a+15)) = (10a-3)^2-(sqrt(291)i)^2#
#color(white)(20(5a^2-3a+15)) = ((10a-3)-sqrt(291)i)((10a-3)+sqrt(291)i)#
#color(white)(20(5a^2-3a+15)) = (10a-3-sqrt(291)i)(10a-3+sqrt(291)i)#
So:
#5a^2-3a+15 = 1/20(10a-3-sqrt(291)i)(10a-3+sqrt(291)i)#