How do you factor #5x^2-3x+4#?
1 Answer
Explanation:
Given:
#5x^2-3x+4#
We can factor with non-real complex coefficients by completing the square and using the difference of squares identity:
#A^2-B^2 = (A-B)(A+B)#
with
I will first multiply by
#20(5x^2-3x+4) = 100x^2-60x+80#
#color(white)(20(5x^2-3x+4)) = (10x)^2-2(10x)(3)+3^2+71#
#color(white)(20(5x^2-3x+4)) = (10x-3)^2+(sqrt(71))^2#
#color(white)(20(5x^2-3x+4)) = (10x-3)^2-(sqrt(71)i)^2#
#color(white)(20(5x^2-3x+4)) = ((10x-3)-sqrt(71)i)((10x-3)+sqrt(71)i)#
#color(white)(20(5x^2-3x+4)) = (10x-3-sqrt(71)i)(10x-3+sqrt(71)i)#
So:
#5x^2-3x+4 = 1/20(10x-3-sqrt(71)i)(10x-3+sqrt(71)i)#