How do you factor #5x^2-3x+4#?

1 Answer
Mar 3, 2018

#5x^2-3x+4 = 1/20(10x-3-sqrt(71)i)(10x-3+sqrt(71)i)#

Explanation:

Given:

#5x^2-3x+4#

We can factor with non-real complex coefficients by completing the square and using the difference of squares identity:

#A^2-B^2 = (A-B)(A+B)#

with #A=10x-3# and #B=sqrt(71)i#

I will first multiply by #2^2 * 5 = 20#, then divide by #20# at the end - in order to avoid much arithmetic with fractions.

#20(5x^2-3x+4) = 100x^2-60x+80#

#color(white)(20(5x^2-3x+4)) = (10x)^2-2(10x)(3)+3^2+71#

#color(white)(20(5x^2-3x+4)) = (10x-3)^2+(sqrt(71))^2#

#color(white)(20(5x^2-3x+4)) = (10x-3)^2-(sqrt(71)i)^2#

#color(white)(20(5x^2-3x+4)) = ((10x-3)-sqrt(71)i)((10x-3)+sqrt(71)i)#

#color(white)(20(5x^2-3x+4)) = (10x-3-sqrt(71)i)(10x-3+sqrt(71)i)#

So:

#5x^2-3x+4 = 1/20(10x-3-sqrt(71)i)(10x-3+sqrt(71)i)#