How do you factor #6s^2 - s - 5#?

2 Answers
Jun 8, 2017

This expression can be factored as:

#(6s + 5)(s - 1)#

Jun 8, 2017

#(6s + 5)(s - 1)#

Explanation:

Given: #6s^2 - s - 5#

To factor you need to find two numbers #x, y# that multiply to #-5#:

#-5, 1 " or " -1, 5#

Possible solutions:
#(6s + x)(s - y) " or " (6s - x)(s + y)#

#(2s + x)(3s - y) " or " (2s -x)(3s + y)#

Let #x = -5, y = 1: #
#(6s -5)(s -1) = 6s^2 -6s -5s + 5 = 6s^2 -11s + 5 " "# NO

#(6s +5)(s-1) = 6s^2 -6s +5s -5 = 6s^2 -s -5" "# YES