How do you factor #6x^3-9x+3#?

1 Answer
May 22, 2016

#3*2*(x-1)(x+(1 +sqrt(3))/2)(x+(1 -sqrt(3))/2)#

Explanation:

#6*x^3-9 x+3=3(2*x^2-3*x+1)# but #2*x^2-3*x+1# has #x-1# as factor because #2*(1)^2-3*(1)+1 = 0# so
#(2*x^3-3*x+1)=(x-1)*(a*x^2+b*x+c)#
doing the product and equating coefficients
#2*x^3+0*x^2-3*x+1 = a*x^3+(b-a)*x^2+(c-b)*x-c#
then
#((2=a),(0=(b-a)),(-3=(c-b)),(1=-c))#
solving #a = 2, b = 2,c = -1# so
#(2*x^3-3*x+1)=(x-1)*(2*x^2+2*x-1)#
but #(2*x^2+2*x-1)=2(x+(1 +sqrt(3))/2)(x+(1 -sqrt(3))/2)#
Finally
#6*x^3-9 x+3=3*2*(x-1)(x+(1 +sqrt(3))/2)(x+(1 -sqrt(3))/2)#