How do you factor #6x^4-9x^2+3#?

1 Answer
Dec 15, 2016

#6x^4-9x^2+3 = 3(sqrt(2)x-1)(sqrt(2)x+1)(x-1)(x+1)#

Explanation:

The difference of squares identity can be written:

#a^2-b^2 = (a-b)(a+b)#

We will use this a couple of times.

Before that, separate out the common scalar factor #3# then treat as a quadratic in #x^2#...

#6x^4-9x^2+3 = 3(2x^4-3x^2+1)#

#color(white)(6x^4-9x^2+3) = 3(2(x^2)^2-3(x^2)+1)#

#color(white)(6x^4-9x^2+3) = 3(2x^2-1)(x^2-1)#

#color(white)(6x^4-9x^2+3) = 3((sqrt(2)x)^2-1^2)(x^2-1^2)#

#color(white)(6x^4-9x^2+3) = 3(sqrt(2)x-1)(sqrt(2)x+1)(x-1)(x+1)#