How do you factor #6x^4-9x^2+3#?
1 Answer
Dec 15, 2016
Explanation:
The difference of squares identity can be written:
#a^2-b^2 = (a-b)(a+b)#
We will use this a couple of times.
Before that, separate out the common scalar factor
#6x^4-9x^2+3 = 3(2x^4-3x^2+1)#
#color(white)(6x^4-9x^2+3) = 3(2(x^2)^2-3(x^2)+1)#
#color(white)(6x^4-9x^2+3) = 3(2x^2-1)(x^2-1)#
#color(white)(6x^4-9x^2+3) = 3((sqrt(2)x)^2-1^2)(x^2-1^2)#
#color(white)(6x^4-9x^2+3) = 3(sqrt(2)x-1)(sqrt(2)x+1)(x-1)(x+1)#