How do you factor #72x^3-228x^2+140x#?
1 Answer
Feb 18, 2017
Explanation:
Complete the square then use the difference of squares identity:
#a^2-b^2 = (a-b)(a+b)#
with
#72x^3-228x^2+140x = 1/2x(144x^2-456x+280)#
#color(white)(72x^3-228x^2+140x) = 1/2x(144x^2-456x+361-81)#
#color(white)(72x^3-228x^2+140x) = 1/2x((12x)^2-2(12x)(19)+19^2-81)#
#color(white)(72x^3-228x^2+140x) = 1/2x((12x-19)^2-9^2)#
#color(white)(72x^3-228x^2+140x) = 1/2x((12x-19)-9)((12x-19)+9)#
#color(white)(72x^3-228x^2+140x) = 1/2x(12x-28)(12x-10)#
#color(white)(72x^3-228x^2+140x) = 1/2x(4(3x-7))(2(6x-5))#
#color(white)(72x^3-228x^2+140x) = 4x(3x-7)(6x-5)#