How do you factor #8n ^ { 2} - 9n - 4#?
2 Answers
Explanation:
Given:
#8n^2-9n-4#
Note that this is in the form:
#an^2+bn+c#
with
Let us look at the discriminant
#Delta = b^2-4ac#
#color(white)(Delta) = (color(blue)(-9))^2-4(color(blue)(8))(color(blue)(-4))#
#color(white)(Delta) = 81+128#
#color(white)(Delta) = 209#
#color(white)(Delta) = 11*19#
So
As a result we can deduce that the given quadratic will factor with irrational real coefficients (but not with rational ones).
We can deduce some factors from the zeros of the quadratic, which we can find using the quadratic formula:
#n = (-b+-sqrt(b^2-4ac))/(2a)#
#color(white)(n) = (-b+-sqrt(Delta))/(2a)#
#color(white)(n) = (-(color(blue)(-9))+-sqrt(Delta))/(2(color(blue)(8)))#
#color(white)(n) = 9/16+-sqrt(209)/16#
Hence, we can factor the given quadratic as:
#8n^2-9n-4 = 8(n-9/16-sqrt(209)/16)(n-9/16+sqrt(209)/16)#
Explanation:
Another way of factorizing is completion of square.
=
=
=
=
=
=