How do you factor completely #f(x) = x^5-2 i x^4-(5+3 i) x^3-(7-3 i) x^2+(6+11 i) x-(1+3 i)# ?
1 Answer
Explanation:
Given:
#f(x) = x^5-2ix^4-(5+3i)x^3-(7-3i)x^2+(6+11i)x-(1+3i)#
Use a Gaussian integer version of the rational roots theorem.
Any Gaussian rational zeros of
Note that:
#abs(-(1+3i)) = sqrt(1^2+3^2) = sqrt(10) = sqrt(2)sqrt(5)#
So
#(1+3i)/(1+i) = ((1+3i)(1-i))/((1+i)(1-i)) = (4+2i)/2 = 2+i#
Hence the possible Gaussian rational zeros of
#+-1# ,#+-i# ,#+-(1+i)# ,#+-(1-i)# ,#+-(2+i)# ,#+-(1-2i)# ,#+-(1+3i)# ,#+-(3-i)#
Trying each in turn, we find:
#f(1) = 1-2i-(5+3i)-(7-3i)+(6+11i)-(1+3i) = -6+6i#
#f(-1) = -1-2i+(5+3i)-(7-3i)-(6+11i)-(1+3i) = -10-10i#
#f(i) = (i)^5-2i(i)^4-(5+3i)(i)^3-(7-3i)(i)^2+(6+11i)(i)-(1+3i) = -8+4i#
#f(-i) = (-i)^5-2i(-i)^4-(5+3i)(-i)^3-(7-3i)(-i)^2+(6+11i)(-i)-(1+3i) = 20-20i#
#f(1+i) = (1+i)^5-2i(1+i)^4-(5+3i)(1+i)^3-(7-3i)(1+i)^2+(6+11i)(1+i)-(1+3i)#
#color(white)(f(1+i)) = (1+5i-10-10i+5+i)-2i(1+4i-6-4i+1)^4-(5+3i)(1+3i-3-i)^3-(7-3i)(1+2i-1)^2+(6+11i)(1+i)-(1+3i)#
#color(white)(f(1+i)) = (-4-4i)-2i(-4)-(5+3i)(-2+2i)-(7-3i)(2i)+(6+11i)(1+i)-(1+3i)#
#color(white)(f(1+i)) = 0#
So
#x^5-2ix^4-(5+3i)x^3-(7-3i)x^2+(6+11i)x-(1+3i)#
#=(x-1-i)(x^4 + (1 - i) x^3 - (3 + 3 i) x^2 - (7 + 3 i) x + (2 + i))#
Let
To cut a long story a little shorter, we find:
#g(2+i) = (2+i)^4 + (1 - i) (2+i)^3 - (3 + 3 i) (2+i)^2 - (7 + 3 i) (2+i) + (2 + i) = 0#
and
#x^4 + (1 - i) x^3 - (3 + 3 i) x^2 - (7 + 3 i) x + (2 + i)#
#=(x-2-i)(x^3+3x^2+3x-1)#
Then:
#x^3+3x^2+3x-1 = x^3+3x^2+3x+1-2#
#color(white)(x^3+3x^2+3x-1) = (x+1)^3-(root(3)(2))^3#
#color(white)(x^3+3x^2+3x-1) = ((x+1)-root(3)(2))((x+1)-omega root(3)(2))((x+1)-omega^2 root(3)(2))#
#color(white)(x^3+3x^2+3x-1) = (x+1-root(3)(2))(x+1-omega root(3)(2))(x+1-omega^2 root(3)(2))#
where