How do you factor #f(x)= x^2-614x-125712#?
1 Answer
Jul 29, 2016
Explanation:
The difference of squares identity can be written:
#a^2-b^2 = (a-b)(a+b)#
We use this later with
Complete the square:
#614/2 = 307#
#307^2 = 94249#
#94249+125712 = 219961 = 469^2#
So:
#f(x) = x^2-614x-125712#
#=(x-307)^2-94249-125712#
#=(x-307)^2-469^2#
#=((x-307)-469)((x-307)+469)#
#=(x-776)(x+162)#