How do you factor # sec^4 x-2 sec^2 x tan^2 +tan^4 x#?

1 Answer
May 17, 2016

#sec(x)^4-2sec(x)^2tan(x)^2+tan(x)^4 = 1#

Explanation:

Remember the polynomial identity
#(a - b)^2= a^2-2a b + b^2#
Let #a = sec(x)^2# and #b = tan(x)^2# so we have
#sec(x)^4-2sec(x)^2tan(x)^2+tan(2)^4 =(sec(x)^2-tan(x)^2)^2#
but #sec(x)^2-tan(x)^2 = 1/(cos(x)^2)-(sin(x)^2)/(cos(x)^2)=(1-sin(x)^2)/cos(x)^2#
Also we know #sin(x)^2+cos(x)^2=1# so putting all together
we get
#sec(x)^4-2sec(x)^2tan(x)^2+tan(x)^4 = 1#