How do you factor the expression #2 x^2 + 5 x +12#?
1 Answer
Aug 13, 2016
Explanation:
The difference of squares identity can be written:
#a^2-b^2 = (a-b)(a+b)#
We use this below with
Multiply by
#8(2x^2+5x+12)#
#=16x^2+40x+96#
#=(4x+5)^2-25+96#
#=(4x+5)^2+71#
#=(4x+5)^2-(sqrt(71)i)^2#
#=((4x+5)-sqrt(71)i)((4x+5)+sqrt(71)i)#
#=(4x+5-sqrt(71)i)(4x+5+sqrt(71)i)#
So:
#2x^2+5x+12 = 1/8(4x+5-sqrt(71)i)(4x+5+sqrt(71)i)#