How do you factor the trinomial #20x² + 47x − 24#?
1 Answer
Explanation:
Use the quadratic formula to find the zeros and hence the linear factors...
#20x^2+47x-24#
is in the form:
#ax^2+bx+c#
with
Let us take a quick look at the discriminant to decide how we should solve this:
#Delta = b^2-4ac = 47^2-4(20)(-24) = 2209+1920 = 4129#
Since
Note that
So let us use the quadratic formula...
The zeros given are by the quadratic formula:
#x = (-b+-sqrt(b^2-4ac))/(2a)#
#color(white)(x) = (-b+-sqrt(Delta))/(2a)#
#color(white)(x) = (-47+-sqrt(4129))/40#
#color(white)(x) = -47/40+-sqrt(4129)/40#
Hence we can factor the given quadratic as:
#20x^2+47x-24 = 20(x+47/40-sqrt(4129)/40)(x+47/40+sqrt(4129)/40)#