How do you factor the trinomial #9a^5b + 33ab^5#?
1 Answer
#9a^5b+33ab^5= 3ab(3a^4+11b^4)#
#= 3ab(sqrt(3)a^2+root(4)(132)ab+sqrt(11)b^2)(sqrt(3)a^2-root(4)(132)ab+sqrt(11)b^2)#
Explanation:
This is actually a binomial (having two terms), not a trinomial (three terms).
That aside, first we identify that both of the terms are divisible by
#9a^5b+33ab^5= 3ab(3a^4+11b^4)#
Since the coefficients of the quartic are both positive, this has no linear factors with Real coefficients, but it does have quadratic factors with Real coefficients:
Consider:
#(c^2+2cd+2d^2)(c^2-2cd+2d^2)=c^4+4d^4#
If we let
#3a^4+11b^4#
#= c^4+4d^4#
#=(c^2+2cd+2d^2)(c^2-2cd+2d^2)#
#=(sqrt(3)a^2+2root(4)(33/4)ab+2sqrt(11/4)b^2)(sqrt(3)a^2-2root(4)(33/4)ab+2sqrt(11/4)b^2)#
#=(sqrt(3)a^2+root(4)(132)ab+sqrt(11)b^2)(sqrt(3)a^2-root(4)(132)ab+sqrt(11)b^2)#
Putting this all together:
#9a^5b+33ab^5#
#= 3ab(sqrt(3)a^2+root(4)(132)ab+sqrt(11)b^2)(sqrt(3)a^2-root(4)(132)ab+sqrt(11)b^2)#
Footnote
The identity:
#(c^2+2cd+2d^2)(c^2-2cd+2d^2)=c^4+4d^4#
came from thinking about
#1/sqrt(2) (+-1+-i)#
Rather than mess about with a
#+-1+-i#
So:
#x^4+4 = (x+1-i)(x+1+i)(x-1-i)(x-1+i)#
#=((x+1)^2+1)((x-1)^2+1)#
#=(x^2+2x+2)(x^2-2x+2)#
Hence:
#c^4+4d^4 = (c^2+2cd+2d^2)(c^2-2cd+2d^2)#