How do you factor the trinomial #a^2 - a + 43#?
1 Answer
May 6, 2016
#a^2-a+43=(a-1/2-(3sqrt(19))/2i)(a-1/2+(3sqrt(19))/2i)#
Explanation:
Complete the square and use the difference of squares identity:
#A^2-B^2=(A-B)(A+B)#
with
#a^2-a+43#
#=(a-1/2)^2-1/4+43#
#=(a-1/2)^2-1/4+172/4#
#=(a-1/2)^2+171/4#
#=(a-1/2)^2+(9*19)/4#
#=(a-1/2)^2-((3sqrt(19))/2i)^2#
#=((a-1/2)-(3sqrt(19))/2i)((a-1/2)+(3sqrt(19))/2i)#
#=(a-1/2-(3sqrt(19))/2i)(a-1/2+(3sqrt(19))/2i)#