How do you factor the trinomial #r^2-34r+2#?

2 Answers
Apr 16, 2016

#r^2-34r+2=(r-17-sqrt(287))(r-17+sqrt(287))#

Explanation:

Factor by completing the square and using the difference of squares identity:

#a^2-b^2=(a-b)(a+b)#

with #a=(r-17)# and #b=sqrt(287)# as follows:

#r^2-34r+2#

#= (r-17)^2-17^2+2#

#= (r-17)^2-287#

#= (r-17)^2-(sqrt(287))^2#

#=((r-17)-sqrt(287))((r-17)+sqrt(287))#

#=(r-17-sqrt(287))(r-17+sqrt(287))#

Apr 17, 2016

There is another way to factor #y = x^2 - 34x + 2.#
#y = (x - 17 + sqrt287)(x - 17 - sqrt287)#

Explanation:

Use the expression of a quadratic function in intercept form
y = a(x - x1)(x - x2)
a = 1, x1 and x2 are the 2 real roots of the equation y = 0.
Solve this equation by the improved quadratic formula (Socratic Search))
#D = d^2 = b^2 - 4ac = 1156 - 8 = 1148# --> #d = +- 2sqrt287#
#x1 = -b/(2a) +- d/(2a) = 34/2 + (2sqrt287)/2 = 17 + sqrt287#
#x2 = 17 - sqrt287#
Therefor, the factored form of y is:
#y = (x - 17 - sqrt287)(x - 17 + sqrt287)#