How do you factor the trinomial #x^2+2x-4=0#?

1 Answer
Feb 9, 2016

#y = (x + 1 + sqrt5)(x + 1 - sqrt5)#

Explanation:

Method 1.
Apply the formula of quadratic function in intercept form (Google Search):
#y = (x +b/(2a) + d/(2a))(x + b/(2a) - d/(2a))#, with
#b/(2a )= 1#
#D = d^2 = 4 + 16 = 20# --> #d = +- 2sqrt5#
We get:
#y = (x + 1 + sqrt5)(x + 1 - sqrt5)#
Method 2.
Solve the quadratic equation.
#D = d^2 = 4 + 16 = 20# --> #d = +- 2sqrt5#
2 real roots: #x1 = (- 1 - sqrt5)# and #x2 = (- 1 + sqrt5)#
Therefor, the factored form is:
#y = (x - x1)(x - x2) = (x + 1 + sqrt5)(x + 1 - sqrt5) #