How do you factor the trinomial #x^2+3x-36=0#?

1 Answer
Dec 26, 2015

#x^2+3x-36=0# can be solved by quadratic formula but cannot be solved by integer factors. In case, you are looking for a solution it is explained below.

Explanation:

Quadratic equations of for #ax^2+bx+c=0# can be solved by the quadratic formula.

#x=(-b+-sqrt(b^2-4ac))/(2a)#

Our question #x^2+3x-36 =0#
Compare with #ax^2+bx+c=0#

#a=1#, #b=3# and #c=-36#

Substitute these values of #a#,#b# and #c# in the formula

#x =(-(3)+-sqrt((3)^2-4(1)(-36)))/(2(1))#

#x=(-3+-sqrt(9+ 144))/2#

#x=(-3+-sqrt(153))/2#

#x=(-3+-sqrt(3^2*17))/2#
#x=(-3+-3sqrt(17))/2#

Solutions:

#x=(-3-3sqrt(17))/2 # or #x=(-3+3sqrt(17))/2#

Real (non-integer) Factors
#x^2+3x-36 = (x+(3-3sqrt(17))/2)(x+(3+3sqrt(17))/2)#