How do you factor the trinomial #x^2-8x +6#?

1 Answer
Dec 2, 2015

#x^2-8x+6=(x-4-sqrt(10))(x-4+sqrt(10))#

Explanation:

If you have a polynomial #f(x)# of degree #n# and you can find all its solution #x_1,..,x_n#, then you have that

#f(x)=(x-x_1)* ... *(x-x_n)#

In your case, #n=2#, so if we find two solutions #x_1# and #x_2#, we can write

#x^2-8x+6=(x-x_1)(x-x_2)#

To find the solution, we can use the standard formula

#x_{1,2} = \frac{-b\pm\sqrt(b^2-4ac)}{2a}#

In your case, #a=1#, #b=-8# and #c=6#. So, the formula becomes

#x_{1,2} = \frac{8\pm\sqrt(64-4*1*6)}{2} = \frac{8\pm\sqrt(64-24)}{2} =\frac{8\pm\sqrt(40)}{2}#

Since #sqrt(40)=sqrt(4*10)=sqrt(4)*sqrt(10)=2sqrt(10)#, the formula becomes

#\frac{8\pm2\sqrt(10)}{2} = 4\pmsqrt(10) #

So, the solutions are #x_1 = 4+sqrt(10)# and #x_2 = 4-sqrt(10)#, and thus we have the factorization

#x^2-8x+6=(x-4-sqrt(10))(x-4+sqrt(10))#