How do you factor #x^2+25x+150#?

1 Answer
Jan 3, 2017

#x^2+25x+150=(x+10)(x+15)#

Explanation:

We want to look for two numbers. These numbers should have a product of #color(blue)150# and a sum of #color(red)25#.

Lets examine all the possible factors of #150#:

#{:(ul"Product",,,," "ul"Sum"),(color(blue)150=,1xx150,=>,1+150,=151),(color(blue)150=,2xx75,=>,2+75,=77),(color(blue)150=,3xx50,=>,3+50,=53),(color(blue)150=,5xx30,=>,5+30,=35),(color(blue)150=,10xx15,=>,10+15,=color(red)25):}#

So, the pair of numbers we're looking for are #10# and #15#.

So, we see that

#x^2+25x+150=(x+10)(x+15)#

Check this by expanding it again:

#(x+10)(x+15)=x(x+15)+10(x+15)#

#color(white)((x+10)(x+15))=(x^2+15x)+(10x+150)#

#color(white)((x+10)(x+15))=x^2+25x+150#