How do you factor #x^2 + 5x - 36 #?
1 Answer
May 23, 2016
Explanation:
Find a pair of factors of
The pair
Hence we find:
#x^2+5x-36=(x+9)(x-4)#
Alternative method
Alternatively, we can complete the square and use the difference of squares identity:
#a^2-b^2=(a-b)(a+b)#
with
First multiply by
#4(x^2+5x-36)#
#=4x^2+20x-144#
#=(2x)^2+2(2x)(5)-144#
#=(2x+5)^2-25-144#
#=(2x+5)^2-169#
#=(2x+5)^2-13^2#
#=((2x+5)-13)((2x+5)+13)#
#=(2x-8)(2x+18)#
#=(2(x-4))(2(x+9))#
#=4(x-4)(x+9)#
Dividing both ends by
#x^2+5x-36 = (x-4)(x+9)#