How do you factor #x^3-18x^2+81x#?

1 Answer
Jun 14, 2015

Separate the common #x# factor then recognise remaining the perfect square trinomial to find:

#x^3-18x^2+81x = x(x-9)^2#

Explanation:

#x^3-18x^2+81x = x(x^2-18x+81)#

We can recognise #x^2-18x+81# as being a perfect square trinomial, as it is of the form #a^2-2ab+b^2 = (a-b)^2# with #a=x# and #b=9#.

Thus:

#x^3-18x^2+81x#

#= x(x^2-18x+81)#

#= x(x^2-(2*x*9)+9^2)#

#= x(x-9)^2#