How do you factor #x^4-44x^2-245#?

2 Answers
Apr 12, 2016

#x^4-44x^2-245#

#=(x-7)(x+7)(x^2+5)#

#=(x-7)(x+7)(x-sqrt(5)i)(x+sqrt(5)i)#

Explanation:

We use the difference of squares identity which may be written:

#a^2-b^2 = (a-b)(a+b)#

So:

#x^4-44x^2-245#

#=(x^2-22)^2-22^2-245#

#=(x^2-22)^2-(484+245)#

#=(x^2-22)^2-729#

#=(x^2-22)^2-27^2#

#=((x^2-22)-27)((x^2-22)+27)#

#=(x^2-49)(x^2+5)#

#=(x^2-7^2)(x^2+5)#

#=(x-7)(x+7)(x^2+5)#

If we allow Complex coefficients:

#=(x-7)(x+7)(x^2-(sqrt(5)i)^2)#

#=(x-7)(x+7)(x-sqrt(5)i)(x+sqrt(5)i)#

Apr 12, 2016

#(x^2 + 5)(x - 7)(x + 7)#

Explanation:

Another way to factor the expression -->
Call #x^2 = X# and factor the trinomial:
#y = X^2 - 44X - 245.#
Find 2 numbers knowing sum (-44) and product (-245). They have opposite signs because ac < 0,
Compose factor pairs of (-245) --> (-5, 49)(5, -49). This last sum is
(-44 = b). Then, the numbers are 5 and -49
y = (X + 5)(X - 49) . Replace X by #x^2# -->
#y = (x^2 + 5)(x^2 - 49)#
#y = (x^2 + 5)(x - 7)(x + 7)#