How do you find a polynomial function that has zeros -4, 5?
1 Answer
Dec 8, 2017
Explanation:
#"given the zeros of a polynomial "x=a" and "x=b#
#"then the factors of the polynomial are "#
#(x-a)" and "(x-b)#
#"and the polynomial is the product of the factors"#
#rArrp(x)=k(x-a)(x-b)larrcolor(blue)"k is a multiplier"#
#"here "a=-4" and "b=5#
#rArr(x+4)" and "(x-5)" are the factors"#
#rArrp(x)=k(x+4)(x-5)#
#"let "k=1#
#rArrp(x)=x^2-x-20" is a possible polynomial"#