If a polynomial has zeros: #color(red)(x=-2), color(blue)(x=4), and color(green)(x=7)#
then it has factors
#color(white)("XXX")(x-(color(red)(-2))), (x-color(blue)(4)), and (x-color(green)7)#
Furthermore, if the polynomial has degree #3#, then these #3# factors are the only factors and the polynomial is
#color(white)("XXX")(x-(color(red)(-2)))xx(x-color(blue)4)xx(x-color(green)7)#
#{:
(,underline(xx),underline(" | "),underline(x),underline(color(red)(+2))),
(,x," | ",x^2,+2x),
(,underline(color(blue)(-4)),underline(" | "),underline(-4x),underline(-8)),
(," | ",x^2,-2x,-8),
(,,,,),
(,,,,),
(underline(xx),underline(" | "),underline(x^2),underline(-2x),underline(-8)),
(x," | ",x^3,-2x^2,-8x),
(underline(color(green)(-7)),underline(" | "),underline(-7x^2),underline(+14x),underline(+56)),
(,x^3,-9x^2,+6x,56)
:}#