How do you find a power series representation for #(1+x)/(1-x) # and what is the radius of convergence?
1 Answer
Oct 1, 2015
Simplify
#(1+x)/(1-x) = 1 + sum_(n=1)^oo 2x^n#
with radius of convergence
Explanation:
#(1+x)/(1-x) = (2-(1-x))/(1-x) = 2/(1-x) - 1#
#1/(1-x) = sum_(n=0)^oo x^n# with radius of convergence#1#
To see that for yourself, notice that:
#(1-x) sum_(n=0)^oo x^n#
#=sum_(n=0)^oo x^n - x sum_(n=0)^oo x^n#
#=sum_(n=0)^oo x_n - sum_(n=1)^oo x^n#
#=1#
.. if the sums converge.
Now the sum
So:
#(1+x)/(1-x) = 1 + sum_(n=1)^oo 2x^n#
with radius of convergence