How do you find a power series representation for #f(x)= 1/(1+4x^2)# and what is the radius of convergence?
1 Answer
Sep 28, 2015
Explanation:
Consider the power series:
#sum_(n=0)^oo (-4x^2)^n = 1 - 4x^2 + 16x^4 - 64x^6 +...#
Then:
#(1+4x^2)(sum_(n=0)^oo (-4x^2)^n)#
#=sum_(n=0)^oo (-4x^2)^n + 4x^2 sum_(n=0)^oo (-4x^2)^n#
#=sum_(n=0)^oo (-4x^2)^n - sum_(n=1)^oo (-4x^2)^n#
#=(-4x^2)^0 = 1#
provided the sum
So
#sum_(n=0)^oo (-4x^2)^n = 1/(1+4x^2) = f(x)#
This is a geometric sequence, so will converge if the common ratio has absolute value
That is:
#abs(-4x^2) < 1# , so#x^2 < 1/4# , so#abs(x) < 1/2#
In general
#1/(1+a) = sum_(n=0)^oo (-a)^n#
which converges if