How do you find a power series representation for #x^2 arctan(x^3# and what is the radius of convergence?
1 Answer
The radius of convergence is
Explanation:
Start with the well known Maclaurin series:
#1/(1-x)=sum_(n=0)^oox^n#
Replacing
#1/(1+x^2)=sum_(n=0)^oo(-x^2)^n=sum_(n=0)^oo(-1)^nx^(2n)#
Integrating to get
#arctan(x)=intdx/(1+x^2)=sum_(n=0)^oo(-1)^nintx^(2n)dx#
#arctan(x)=C+sum_(n=0)^oo(-1)^nx^(2n+1)/(2n+1)#
Letting
#arctan(x)=sum_(n=0)^oo(-1)^n/(2n+1)x^(2n+1)#
Replacing
#arctan(x^3)=sum_(n=0)^oo(-1)^n/(2n+1)(x^3)^(2n+1)=sum_(n=0)^oo(-1)^n/(2n+1)x^(6n+3)#
Multiplying by
#x^2arctan(x^3)=x^2sum_(n=0)^oo(-1)^n/(2n+1)x^(6n+3)=color(blue)(sum_(n=0)^oo(-1)^n/(2n+1)x^(6n+5)#
This is the Maclaurin series for
#abs(a_(n+1)/a_n)=abs(((-1)^(n+1)/(2(n+1)+1)x^(6(n+1)+5))/((-1)^n/(2n+1)x^(6n+5)))=abs(((-1)^(n+1)/(2n+3)x^(6n+11))/((-1)^n/(2n+1)x^(6n+5)))#
#abs(a_(n+1)/a_n)=abs((-1)^(n+1)/(-1)^n((2n+1)/(2n+3))x^(6n+11)/x^(6n+5))=abs(x^6((2n+1)/(2n+3)))#
Through the ratio test, we know the series converges when
The internal limit is
#absx^6<1" "=>" "absx<1#
Thus the radius of convergence is