How do you find all solutions of the equation #cos(x+(3pi)/4)-cos(x-(3pi)/4)=0# in the interval #[0,2pi)#?

1 Answer
Jan 9, 2017

#0, pi, 2pi#

Explanation:

Use trig identity:
#cos a - cos b = - 2sin ((a + b)/2)sin ((a - b)/2)#
In this case:
(a + b) = 2x --> #sin ((a + b)/2) = sin x#
#(a - b) = (6pi)/4# --> #sin ((a - b)/2) = sin ((3pi)/4)#
The equation f(x) becomes:
#f(x) = cos (x + (3pi)/4) - cos (x - (3pi)/4) =#
#= - 2sin x.sin ((3pi)/4) = 0#
Since #sin ((3pi)/4) = sqrt2/2#, then:
#f(x) = - sqrt2.sin x = 0#
Unit circle -->
sin x = 0 --> #x = 0, x= pi, x = 2pi#
Answers for #(0, 2pi)#
#0, pi, 2pi#