How do you find all the complex roots of #5x^6 + x^4 -3 = 0#?
1 Answer
Solve as a cubic equation in
Explanation:
Let
Then our polynomial equation becomes:
Multiply through by
#3t^3-t-5 = 0#
Use Cardano's method:
Let
Then:
#0 = 3(u+v)^3-(u+v)-5#
#=3u^3+3v^3+(9uv-1)(u+v)-5#
Add the constraint
#=3u^3+1/(243u^3)-5#
Multiply through by
#729(u^3)^2-1215(u^3)+1 = 0#
This has roots given by the quadratic formula:
#u^3 = (1215+-sqrt(1215^2-(4*729)))/1458#
#=(1215+-sqrt(1476225-2916))/1458#
#=(1215+-sqrt(1473309))/1458#
#=(1215+-27 sqrt(2021))/1458#
#=(45+-sqrt(2021))/54#
The derivation was symmetric in
#t_1 = root(3)((45+sqrt(2021))/54) + root(3)((45-sqrt(2021))/54)#
#= 1/3 root(3)((45+sqrt(2021))/2) + 1/3 root(3)((45-sqrt(2021))/2)#
and the non-Real Complex roots are given by:
#t_2 = 1/3 omega root(3)((45+sqrt(2021))/2) + 1/3 omega^2 root(3)((45-sqrt(2021))/2)#
#t_3 = 1/3 omega^2 root(3)((45+sqrt(2021))/2) + 1/3 omega root(3)((45-sqrt(2021))/2)#
where
Hence the roots of our original equation are:
#x_(1,2) = +-1/sqrt(t_1)#
#x_(3,4) = +-1/sqrt(t_2)#
#x_(5,6) = +-1/sqrt(t_3)#
For example,
#x_3 = 1/sqrt(1/3 omega root(3)((45+sqrt(2021))/2) + 1/3 omega^2 root(3)((45-sqrt(2021))/2)#
I have previously explained how to get the square root of a Complex number in