How do you find all the real and complex roots of #f(x)=x^3+x-3#?
1 Answer
Use Cardano's method to find the Real zero:
#x_1 = 1/3(root(3)((81+3sqrt(741))/2)+root(3)((81-3sqrt(741))/2))#
and related Complex zeros.
Explanation:
The discriminant
#Delta = b^2c^2-4ac^3-4b^3d-27a^2d^2+18abcd#
So in our example, with
#Delta = 0-4-0-243+0 = -247 < 0#
Since
It can be solved using Cardano's method.
Let
Then:
#u^3+v^3+(3uv+1)(u+v)-3 = 0#
Add the constraint
#u^3-1/(27u^3)-3 = 0#
Multiply through by
#27(u^3)^2-81(u^3)-1 = 0#
Then use the quadratic formula to find:
#u^3 = (81+-sqrt(81^2-(4*27*-1)))/(2*27)#
#=(81+-sqrt(6561+108))/54#
#=(81+-sqrt(6669))/54#
#=(81+-3sqrt(741))/54#
Since this is Real and the derivation was symmetric in
#x_1 = 1/3(root(3)((81+3sqrt(741))/2)+root(3)((81-3sqrt(741))/2))#
and Complex zeros:
#x_2 = 1/3(omega root(3)((81+3sqrt(741))/2)+omega^2 root(3)((81-3sqrt(741))/2))#
#x_3 = 1/3(omega^2 root(3)((81+3sqrt(741))/2)+omega root(3)((81-3sqrt(741))/2))#
where