How do you find all the real and complex roots of # x^6-28x^3+27=0#?
1 Answer
Notice that the sum of the coefficients is zero to factor as
Explanation:
The primitive Complex cube root of
#omega = -1/2 +sqrt(3)/2i#
The cube roots of
To verify this you can factor
#-1/2+-sqrt(3)/2i#
#x^6-28x^3+27#
#=(x^3-1)(x^3-27)#
#=(x^3-1^3)(x^3-3^3)#
#=(x-1)(x-omega)(x-omega^2)(x-3)(x-3omega)(x-3omega^2)#
So the roots of
#x=1#
#x=omega = -1/2+sqrt(3)/2i#
#x=omega^2 = -1/2-sqrt(3)/2i#
#x=3#
#x=3omega = -3/2+(3sqrt(3))/2i#
#x=3omega^2 = -3/2-(3sqrt(3))/2i#