How do you find all the real and complex roots of #(z-1)^3 =8i#?
1 Answer
Dec 29, 2016
The roots are all complex:
#z_1 = 1+sqrt(3)+i#
#z_2 = 1-sqrt(3)+i#
#z_3 = 1-2i#
Explanation:
Using de Moivre's formula, note that:
#(cos(pi/6) + i sin(pi/6))^3 = cos(pi/2)+i sin(pi/2) = i#
So one cube root of
#cos(pi/6)+ i sin(pi/6) = sqrt(3)/2 + 1/2i#
The other cube roots can be formed by adding
#cos((5pi)/6) + i sin((5pi)/6) = -sqrt(3)/2 + 1/2i#
#cos((3pi)/2) + i sin((3pi)/2) = -i#
The cube roots of
So the cube roots of
#sqrt(3)+i#
#-sqrt(3)+i#
#-2i#
We find the required values of
#z_1 = 1+sqrt(3)+i#
#z_2 = 1-sqrt(3)+i#
#z_3 = 1-2i#